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Abstract
We study the dynamics of a single electron spin in a double quantum dot (DQD) and its readout
via a quantum point contact (QPC). We model the system microscopically and derive rate
equations for the reduced electron density matrix of the DQD. Two cases with one and two
electrons in the DQD are studied. In the one-electron case, with different Zeeman splittings in
the two dots, the electron spin states are distinctly characterized by a constant and an oscillatory
current through the QPC. In the two-electron case, the readout of the spin state of the electron in
one of the dots called the qubit dot is essentially similar after considering hyperfine interactions
between the electrons and the nuclear spins of the host materials and a uniform magnetic field
applied to the DQD. Moreover, to ensure that an electron is properly injected into the qubit dot,
we propose to determine the success of the electron injection from the variations of the QPC
current after applying an oscillating magnetic field to the qubit dot.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A single or a small number of electron spins confined
in a semiconductor quantum dot (QD) has become a
subject of considerable interest, partly motivated by potential
applications in quantum information processing. Because a
electron spin in a QD can have a relatively long decoherence
time, it is a promising candidate for realizing a qubit [1, 2],
the basic unit of a quantum computer. For a single electron
spin, the dephasing time is found in theory to be microseconds
in both GaAs [3, 4] and InAs dots [5]. Experimental results
show that the ensemble dephasing time of an electron spin has
the order of nanoseconds [6, 7]. Moreover, the spin relaxation
time in a large GaAs dot is found to be about 1–10 μs at
a moderately low temperature of 10 K [8]. Indeed, recent
experiments have demonstrated that spins in QDs can be used
to carry quantum information [9–11]. For both applications
in quantum computing and fundamental research, the readout
of qubit states based on electron spin is a centrally important
issue [12]. However, due to the weak magnetic moment

associated with the electron spin, it is difficult to directly
measure the electron spin states. A possible solution is to
correlate the spin states to charge states, and the measurement
of the charge on the dot will provide information about the
original spin states [2]. This can be implemented using a
quantum point contact (QPC), which is a charge detector and
can be used to determine the number variation of the electrons
confined in the QD.

Recently, the readout of electron spin states in a QD has
been realized using such a spin–charge conversion [10, 13].
For the experiment in [10], a QD is connected to an electron
reservoir. Applying an external magnetic field, gate voltages
are applied so that the electron confined in the dot can tunnel
to the reservoir if its spin is down. (A spin-up electron cannot
tunnel in this case.) A nearby QPC is used to detect the
electron number variation in this QD and can determine the
electron spin state in the QD. Also, Engel et al [14] proposed
various implementations of the readout process based on a
double quantum dot (DQD). Barrett and Stace [15] proposed
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Figure 1. Schematic diagram of a double quantum dot (DQD) and a quantum point contact (QPC) with only one electron in the DQD.
The left (qubit) dot of the DQD is coupled to a right (reference) dot via hopping. The nearby QPC is used as a detector measuring the number
variation of electrons in the reference dot. An energy-level detuning of the electron spin states is generated using two external magnetic fields
in the two dots. (a) Gate voltages are adjusted to keep EL↑ = ER↑, so that the hopping of the spin-up electron between the left and right dot is
allowed. Moreover, the energy-level detuning for the spin-down electron is much larger than the hopping strength, i.e., ER↓ − EL↓ � �0, and
hence the hopping of the spin-down electron between the two dots is forbidden. (b) The hopping blockade for the spin-down electron is lifted
by applying a transverse magnetic field B(t) = Bx

L cos(ωct) to the left dot, which flips the electron spin.

a electron spin readout approach using a microwave field and
an inhomogeneous Zeeman splitting across the DQD.

In the present paper, we study two implementations for
reading-out electron spin states based on a DQD coupled to
a QPC. Also, we explain the effects of static and oscillating
magnetic fields on the electron spin states. The first
implementation involves a single electron in the DQD. The
readout of the spin states is based on the different Zeeman
splittings in the two QDs. In the second implementation,
two electrons are allowed in the DQD. The Pauli exclusion
principle and hyperfine interactions between the electrons in
the DQD and the nuclear spins in the host materials enable
the readout of the electron spin states. These are interesting
examples for implementing readout of the electron spin states.
A potential advantage of our proposal is that the readout
manipulation can easily be switched on (off) by decreasing
(increasing) the tunneling barrier between the two dots through
varying the gate voltages. Thus, the readout process can
be implemented only when needed. This is important in
quantum information processing. To understand the underlying
physics from a microscopic point of view, we derive a set of
rate equations describing the electron dynamics of the DQD
system. Based on these rate equations, we calculate the QPC
current and illustrate that the QPC current behaves differently
for different spin states.

The paper is organized as follows. In section 2, we model
the system when only one electron is confined in the DQD.
A set of Bloch-type rate equations are derived to describe the
detailed measurement processes for the electron spin states in
the qubit dot. In section 3, we study the measurement of the
electron spin states in the qubit dot when two electrons are
confined in the DQD. Section 4 is the conclusion.

2. Readout of single electron spin: one electron
in DQD

2.1. Theoretical model

We first discuss a scheme to detect the electron spin states
in the case with only one electron confined in the DQD. As
schematically shown in figure 1, the whole system consists of
a DQD and a QPC. The left dot is used as a qubit dot, in which
the electron spin is expected to be read out. The right dot is
used as a reference dot. The QPC is capacitively coupled to the
right dot and serves as a readout device. The electron number
variation in the right dot induces a change in the barrier in
the QPC. This leads to a variation of the current through the
QPC, which can be used to indicate the occupation of the right
dot [16].

The Hamiltonian of the whole system is given by

H = HDQD + HQPC + Hint + Hrf, (1)

with

HDQD =
∑

iσ

Eiσ c†
iσ ciσ +

∑

σ

�0(c
†
LσcRσ + c†

Rσ cLσ ), (2)

where i = L, R denote the left and right dots, and c†
iσ (ciσ ) is

the creation (annihilation) operator of electron with spin σ in
the i th QD.�0 denotes the hopping amplitude between the two
dots and here it is assumed to be spin-independent. We have
denoted the energy levels in the i th dot by Ei↑(↓) = Ei ∓ 1

2�
z
i ,

with �z
i = gμB Bz

i , where Ei is the orbital energy level of the
QD and Bz

i is an externally applied magnetic field in the i th
dot along the z direction. Here, g is the effective gyromagnetic
factor and μB is the Bohr magneton. We have chosen the unit
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h̄ = 1. The Hamiltonian of the QPC reads

HQPC =
∑

αk

Eαka†
αkaαk +

∑

lrk

�lr

(
a†

lkark + a†
rkalk

)
, (3)

where a†
αk (aαk) is the creation (annihilation) operator of an

electron with momentum k in reservoir α (α = l, r ). Hint gives
the electrostatic interaction between the DQD and the QPC:

Hint =
∑

lrkσ

δ�lr c†
Rσ cRσ (a

†
lkark + a†

rkalk). (4)

An electron spin resonance (ESR) magnetic field is
applied in the x direction at the left dot, leading to a term

Hrf = �x(t)(c
+
L↑cL↓ + H.c.) (5)

with �x(t) = 1
2 gμB Bx

L cos(ωct). This ESR magnetic field
generates spin flipping when it is resonant with the Zeeman
splitting on the left dot, i.e., ωc = gμB Bz

L.
The spin-up and spin-down states |↑L〉 and |↓L〉 in the

left dot constitute the basis states of a qubit. The right dot
works as a reference dot, the electron occupation of which is
measured by the nearby QPC. Energy detuning for the spin-up
(-down) electron is ε↑(↓) = ER↑(↓) − EL↑(↓). We assume that
the Zeeman splittings�z

i are different in the two dots. This can
be realized, e.g., by applying a micro-size permanent magnet
near one dot of the DQD [17]. This leads to a difference
ε↑ − ε↓ = �z

R − �z
L in the energy-level splittings for the

spin-up and spin-down electrons. In our consideration, gate
voltages are adjusted to keep ε↑ ≈ 0, so that a spin-up electron
can hop back and forth between the two dots. Furthermore,
we also assume ε↓ � ε↑,�0, so that hopping is forbidden
for spin-down electrons. However, this spin blockade can be
lifted by an ESR magnetic field. Here, in the one-electron case,
the effects of the nuclear magnetic fields in the two dots are
neglected. This is because the Zeeman splitting in each dot is
much larger than the nuclear field in the x and y directions.
Moreover, the z component of the nuclear field only shifts the
energy level and can be included in the Zeeman splitting.

The physical picture of the electron spin readout is as
follows. We first inject an electron with either up or down
spin into the qubit (left) dot. An initially spin-up electron in
the qubit dot can hop into the reference dot. This will lead
to a variation of the current through the QPC. In contrast, for
an initially spin-down electron in the qubit dot, it will remain
stationary because ε↓ � �0. As a result, no variation in the
QPC current occurs. Therefore, one can determine the initial
electron spin state based on the variation of the current through
the QPC. However, in practical experiments, the injection of
electrons into the DQD may not be always successful. Without
any electron in the DQD, there is also no variation in the QPC
current. Thus, this simple implementation cannot distinguish
between the cases with zero or one spin-down electron. To
solve this problem, as will be shown below, one can apply an
ESR magnetic field in the qubit dot. The ESR magnetic field
induces spin flipping in the left dot. If there is a spin-down
electron, it can be converted to the spin-up state by the ESR
field and then hop onto the right dot. Therefore, a current
variation will be observed in the QPC. In contrast, the QPC
current will remain unchanged in the zero-electron case even
in the presence of the ESR field.

2.2. Bloch-type rate equation

To describe the physical processes quantitatively, we derive a
set of Bloch-type rate equations for the reduced density matrix
σ(t) of the DQD system. Following Gurvitz et al [18, 19], we
write the wavefunction of the whole system in the occupation
representation as

|	(t)〉 =
∑

σ

[
bLσ (t)c

†
Lσ + bRσ (t)c

†
Rσ

+
∑

lr

bLσ lr (t)c
†
Lσa†

r al +
∑

lr

bRσ lr (t)c
†
Rσa†

r al

+
∑

l<l′ ,r<r ′
bLσ ll′rr ′(t)c†

Lσa†
r a†

r ′ alal′

+
∑

l<l′ ,r<r ′
bRσ ll′rr ′(t)c†

Rσa†
r a†

r ′alal′ + · · ·
]
|0〉, (6)

where b j(t), j = Lσ,Rσ,Lσ lr,Rσ lr, . . .. are the time-
dependent probability amplitudes to find the system in the
corresponding states. For example, bLσ lr (t) denotes the
probability amplitude for the state with an electron having
tunneled through the QPC barrier (from the left reservoir to the
right one) at time t , and an extra electron with spin σ staying
in the left dot. The vacuum state |0〉 corresponds to the state
where there is no extra electron in the DQD and all the energy
levels up to the Fermi energies μL and μR of the two reservoirs
of the QPC are occupied by electrons.

The relevant electron states of the DQD span a four-
dimensional Hilbert space. We adopt the notations |1〉 ≡ |↑L〉
and |2〉 ≡ |↓L〉 for the left-dot states, as well as |3〉 ≡ |↑R〉 and
|4〉 ≡ |↓R〉 for the right-dot states. A diagonal element σii (t)
(i = 1, 2, 3, 4) of the reduced matrix represents the occupation
probability of the state |i〉, while an off-diagonal element σi j (t)
characterizes the quantum coherence. Each σii is further given
by

σii (t) = σ
(0)
ii + σ

(1)
ii + σ

(2)
ii + · · · , (7)

where σ (n)ii is the probability that the DQD is at state |i〉 after
n electrons have tunneled from the left reservoir of the QPC to
the right one. In this notation, we have, for example

σ
(0)
11 = |bL↑(t)|2,

σ
(1)
11 =

∑

lr

|bL↑lr (t)|2,

σ
(2)
11 =

∑

l<l′ ,r<r ′
|bL↑ll′rr ′ |2, . . . .

(8)

The current flowing through the QPC is

IQPC(t) = e
dN(t)

dt
, (9)

where N(t) is the number of electrons transported to the right
reservoir of the QPC at time t . Accordingly, we have

IQPC(t) =
∑

n,i

nσ̇ (n)ii (t). (10)

Substituting the many-body wavefunction of the whole
system into the Schrödinger equation i|ψ̇(t)〉 = H |ψ(t)〉,
one gets a set of differential equations for the probability
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amplitudes b j(t). In the nonequilibrium transport in the QPC
with a large voltage bias, following [19] and [20], the Bloch-
type rate equations for the reduced density matrix σ(t) of the
DQD are derived by integrating the degrees of freedom of the
QPC reservoirs. By summing σ̇ (n)(t) over n, the rate equations
for the diagonal elements are given by

σ̇11(t) = i�0(σ13 − σ31)+ i�x(t)(σ12 − σ21),

σ̇22(t) = i�0(σ24 − σ42)+ i�x(t)(σ21 − σ12),

σ̇33(t) = i�0(σ31 − σ13),

σ̇44(t) = i�0(σ42 − σ24).

(11)

The rate equations for the off-diagonal elements are

σ̇12(t) = i(EL↓ − EL↑)σ12 − i�0σ32 + i�0σ14

+ i�x(t)(σ11 − σ22),

σ̇13(t) = i(ER↑ − EL↑)σ13 + i�0(σ11 − σ33)− i�x(t)σ23

− �d

2
σ13 − χ

2
σ11 − χ

2
σ33,

σ̇14(t) = i(ER↓ − EL↑)σ14 + i�0σ12 − i�0σ34 − i�x(t)σ24

−�d

2
σ14 − χ

2
σ12 − χ

2
σ34,

σ̇23(t) = i(ER↑ − EL↓)σ23 + i�0σ21 − i�0σ43 − i�x(t)σ13

− �d

2
σ23 − χ

2
σ21 − χ

2
σ43,

σ̇24(t) = i(ER↓ − EL↓)σ24 + i�0(σ22 − σ44)− i�x(t)σ14

−�d

2
σ24 − χ

2
σ22 − χ

2
σ44,

σ̇34(t) = i(ER↓ − ER↑)σ34 + i�0σ32 − i�0σ14,

(12)

where �d = (
√

D′ − √
D)2 is the dephasing rate induced by

the QPC detector [19]. Here we have defined

D = 2πρLρR�
2Vd, D′ = 2πρLρR�

′2Vd, (13)

and

χ = �

Vd

(
�

�′ + �′

�
− 2

)
, (14)

with � = 2πρLρR�
′�0�Vd. In equation (12), the terms

proportional to χ are due to the inclusion of higher-order terms
of O(�2�0/V 2

d ) [20]. Also, we assume that the tunneling
couplings depend weakly on the energy, so that �lr (El, Er ) ≡
�, and �lr + δ�lr ≡ �′. Vd = μL − μR is the voltage bias
applied on the QPC and ρL(ρR) is the density of states in the
left (right) reservoir of the QPC. From equation (12), one can
see that �d characterizes the exponential damping of the off-
diagonal density matrix elements. Now, the QPC current is
given by

IQPC(t) = I0[σ11(t)+ σ22(t)] + I1[σ33(t)+ σ44(t)], (15)

where I0 ≡ D is the current flowing through the QPC when
the right dot of the DQD is empty, while I1 ≡ D′ is the QPC
current when the right dot is occupied by one electron. Since

I0 �= I1 in general, one can determine the electron occupation
of the right dot from the variation of the QPC current.

We first consider the case without an ESR oscillating
magnetic field, i.e., �x(t) = 0. Using equations (11) and (12),
one can numerically calculate the occupation probabilities σii ,
i = 1 to 4. A typical value for the hopping coupling between
the two dots in experiments is �0 = 0.25 μeV [21]. We
have taken parameters so that the initial current of the QPC
is I0 = 1.5 nA if the right dot is empty [10], while it equals
I1 = 1 nA if there is an electron in the right dot. First, consider
the case that a spin-up electron is injected into the left dot.
Figure 2(a) shows the calculated occupation probability of the
electron in the right dot. The corresponding current flowing
through the QPC is given in figure 2(c). It shows that the
current IQPC starts from the initial value I0, and then decreases,
oscillates and finally converges to a value other than I0. In
addition, oscillations in both the occupation probability and the
QPC current are observed. This results from the fact that the
spin-up electron can tunnel back and forth between the dots.
In contrast, if the electron injected into the left dot is spin-
down, it cannot hop into the right dot because ε↓ � �0. The
electron occupation probability in the right dot is hence zero
(see figure 2(b)). The down spin is also reflected in figure 2(d),
where the QPC current remains unchanged. Accordingly, one
can distinguish between the two initial electron spin states from
the variation of the QPC current. In short, if the QPC current
decreases from its initial value, the initial spin state is spin-up.
Alternatively, if the initial spin state is spin-down in the left
dot, the QPC current remains unchanged.

We have repeated the calculation by considering an
additional ESR magnetic field. Without such a field, we cannot
distinguish between the case with no electron in the left dot
from that with a spin-down electron as discussed in section 2.1.
Both give rise to no QPC current variation. In the presence
of an ESR field on the left dot (i.e., �x �= 0), for the zero-
electron case, the QPC current remains unchanged. However,
for an initial spin-down electron in the left dot |↓L〉, it can
flip to the spin-up state |↑L〉, induced by the ESR oscillating
magnetic field. In contrast, the spin-up electron can hop into
the right dot (see figure 3(a)). This leads to a variation in the
QPC current (see figure 3(b)). Therefore, these two cases can
now be distinguished.

3. Readout of single electron spin: two electrons
in the DQD

3.1. Theoretical model

We now study the readout of the electron spin states in the
left (qubit) dot assuming that an additional electron initially
occupies the right (reference) dot (see figure 4), as in a recent
experiment [22]. We further assume that the gate voltages of
the dots are tuned so that no two electrons can simultaneously
stay in the qubit dot. Thus, the two relevant occupation
configurations correspond to two electrons in the right dot or
one electron in each dot. The total Hamiltonian is

H = HQPC + HDQD + Hint, (16)

4
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Figure 2. Time evolution of the electron occupation probability in the right dot for (a) spin-up |↑L〉 and (b) spin-down |↓L〉 electron states in
the left dot. (c) and (d) Time evolution of the QPC currents corresponding to (a) and (b), respectively. We have set the parameters as
�0 = 0.25 μeV, χ = 0.0025 μeV and �d = 60 MHz.

Figure 3. (a) Time evolution of the occupation probability in the spin-up state |↑R〉 in the right dot in the presence of an oscillating magnetic
field. Initially, the electron in the left dot is in the spin-down state |↓L〉. (b) The corresponding time evolution of the QPC current. We have
taken �x = 0.3 μeV, and ω = 0.5 μeV.

where HQPC is the Hamiltonian of the QPC in the two-electron
case, which has the same form as equation (3), but with
�lr replaced by �′

lr . The Hamiltonian of the isolated DQD
system after considering both inter- and intra-dot Coulomb
interactions now becomes

HDQD = H0 + Hspin, (17)

where

H0 =
∑

iσ

Ei c
+
iσ ciσ +�0

∑

σ

(c+
LσcRσ + H.c.)

+
∑

i

Ui ni↑ni↓ + ULR

∑

σσ ′
nLσnRσ ′ . (18)

In the absence of a net nuclear polarization, randomly
oriented and fluctuating nuclear spins in the host materials
give rise to effective magnetic fields BNL and BNR in the
left and right dot, respectively. They results from different

local environments for the electrons in the respective dots.
However, nuclear fields change with a nuclear spin relaxation
timescale of the order 1 s, which is much longer than any
timescales characterizing the transport processes of electron.
These nuclear effective fields can thus be regarded as static
fields in our discussion [23–25]. Therefore, we can describe
the influence of the magnetic fields on the electron spins in the
DQD by

Hspin = gμBBNL · SL + gμBBNR · SR

+ gμB Bz
ext(S

z
L + Sz

R)+ gμB Bx
L cos(ωct)Sx

L, (19)

where SL and SR correspond to the electron spin in the left
and right dots, respectively. The third term in equation (19)
is the Zeeman splitting caused by an external perpendicular
field. The last term is an ESR oscillating magnetic field in the
x direction. In the present discussion, we assume that the ESR
oscillating magnetic field is only applied on the qubit dot.

5
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Figure 4. Schematic diagram of a double quantum dot (DQD) and a quantum point contact (QPC) with two electrons in the DQD. One
spin-up electron is initially kept in the reference dot by properly adjusting the gate voltages. (a) A spin-down electron in the left dot can always
hop into the right dot after taking hyperfine interactions into account. (b) Transport of a spin-up electron is forbidden due to Pauli exclusion.

The relevant electronic states for the DQD span a five-
dimensional Hilbert space. The basis set consists of double-
dot triplets |1〉 ≡ |T+〉 = |↑L↑R〉, |2〉 ≡ |T−〉 = |↓L↓R〉,
and |3〉 ≡ |T0〉 = 1√

2
(|↑L↓R〉 + |↓L↑R〉), double-dot singlet

|4〉 ≡ |SD〉 = 1√
2
(|↑L↓R〉 − |↓L↑R〉), and single-dot singlet

|5〉 ≡ |SS〉 = 1√
2
(|↑R↓R〉 − |↓R↑R〉). Single-dot triplet states

are excluded due to their much higher orbital energies [26, 11].
In this representation, HDQD is rewritten as

HDQD =
∑

i=1,2,3,4,5

Ei |i〉〈i |

+ gμB√
2

[
(Bx

s + iB y
s )|3〉〈1| + (Bx

s − iB y
s )|3〉〈2| + H.c.

]

+ gμB√
2

[
(−Bx

d − iB y
d )|4〉〈1| + (Bx

d − iB y
d )|4〉〈2| + H.c.

]

+ �0(|4〉〈5| + |5〉〈4|)+ gμB Bz
d

(|3〉〈4| + |4〉〈3|)
+ �1 cos(ωct)

[|3〉〈1| + |3〉〈2| − |4〉〈1| + |4〉〈2|
+ H.c.

]
, (20)

where Bd = 1
2 (BNL − BNR), Bs = 1

2 (BNL + BNR) + Bz
extz̃,

and �1 = 1
2
√

2
gμB Bx

L. We have also introduced energy levels
given by

E1,2 = E3 ∓ gμB Bz
s , E3,4 = EL + ER + ULR, (21)

and
E5 = 2ER + UR. (22)

A critical step in the readout is the hopping to the right dot,
where there is a nonzero Coulomb energy barrier

� = E5 − E4 = UR − ULR − (EL − ER), (23)

for the second electron at the right dot if the intra-dot repulsion
UR dominates.

The interaction Hamiltonian between the DQD and the
QPC is

Hint =
∑

lrkσ

δ�′
lr c†

Rσ cRσ c†
Rσ̄ cRσ̄ (a

†
lkalk + a†

rkark). (24)

In the singlet–triplet representation, it can be written as

Hint =
∑

lrk

δ�′|5〉〈5|(a†
lkark + a†

rkalk). (25)

Similar to the one-electron case, the hopping amplitude �′
lr of

the QPC and its change δ�′
lr by either adding or removing an

electron in the right dot are assumed to be energy-independent,
so that �′

lr (El, Er ) ≡ �′ and �′
lr + δ�′

lr ≡ �′′. As discussed
in the one-electron case, the left QD is a qubit dot and the right
dot is a reference dot. The nearby QPC works as a detector
to measure the number change of electrons in the reference
dot. When one electron stays in the reference dot, the current
flowing through the detector is I1. For double occupancy in the
reference dot, the detector current becomes I2, where I2 < I1

because of the increased QPC barrier induced by the additional
electron. As a result, the variation of the electron number in the
reference dot can be reliably detected from the current change
of the detector.

We first briefly discuss the readout processes of the qubit
states. We assume that the electron that is always kept in
the right dot is spin-up. This can be realized by injecting an
unpolarized electron and wait for a time interval much longer
than the typical relaxation time of a single electron spin. It
will relax to its ground spin-up state due to its coupling to the
outside environment. An additional electron is then injected
into the qubit dot and its spin state will be readout. For a spin-
down qubit electron, the initial total spin in the z direction is
Sz = 0. The DQD system takes either the double electron
state |3〉 or |4〉 with an equal probability of 1/2. If the state
taken is |4〉, the electron can directly hop onto the right dot.
This hopping is described by the �0 term in equation (20).
Otherwise, if it is |3〉, the electron can transit to state |4〉, as
allowed by the Bz

d term in equation (20). Then hopping into
the right dot becomes similarly possible. Therefore, the qubit
electron can always hop onto the reference dot on the right,
leading to the state |5〉 for Sz = 0. Due to this hopping,
the QPC current changes from I1 to another value and this
indicates the spin-down qubit state.

6
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Figure 5. Time evolution of the occupation probability σ55(t) for the single-dot singlet state |SS〉 with four different initial conditions:
(a) σ11(0) = 1, (c) σ33(0) = 1, (e) σ44(0) = 1 and (g) σdd(0) = 1, where the hyperfine interaction is not considered. (b), (d), (f) and (h) The
corresponding QPC currents. Here we have chosen the following parameters: Bx,y,z

NL = (0, 0, 0) mT, Bx,y,z
NR = (0, 0, 0) mT, ωc = 3.75 μeV,

� = 0.25 μeV, �0 = 0.25 μeV, χ ′ = 0.0025 μeV, �1 = 0.375 μeV, and �′
d = 60 MHz.

In contrast, for a spin-up qubit electron leading to a total
spin component Sz = 1, it forms the triplet state |1〉 with
the spin-up electron in the reference dot. Because of the

application of a large external magnetic field Bz
ext �

√
〈B2

N 〉,
this triplet state |1〉 is far away in energy from other states.
Thus, it is decoupled from states |3〉 or |4〉 and the electron
in the left dot cannot hop to the right dot. Therefore, the
current flowing through the QPC remains constant at I1 and
this indicates that the initial qubit state is spin-up.

3.2. Bloch-type rate equation

To reveal the quantum dynamics of electron states in the
DQD system, we derive a set of Bloch-type rate equations for
the reduced density matrix σ(t) of the DQD, also using the
technique developed by Gurvitz et al [18]. We assume the

high Zeeman splitting limit, i.e., Bz
ext �

√
〈B2

N 〉, in order
to suppress the effect of the nuclear fields. Spin flips caused
by hyperfine interactions are then negligible. The many-body

wavefunction |	(t)〉 of the whole system in the singlet–triplet
basis is given by

|	(t)〉 =
∑

i=1,2,3,4,5

[
bi(t)c

+
i +

∑

lr

bilr (t)c
+
ilr a†

r al

+
∑

l<l′ ,r<r ′
bill′rr ′(t)c+

i a†
r ar ′alal′ + · · ·

]
|0〉, (26)

where |0〉 is the vacuum state and b j(t) are the time-dependent
probability amplitudes of the corresponding state | j〉. For
example, when j = i lr , with i = 1, 2, . . .. or 5, b j(t) is
the probability amplitude of the state with the DQD system at
state |i〉 after one electron has already passed through the QPC
at time t . In addition, we have used c†

i (ci ), which denotes
the creation (annihilation) operator for state |i〉 in the DQD
system.

Substituting the wavefunction |	(t)〉 (equation (26)) into
the Schrödinger equation i|	̇(t)〉 = H |	(t)〉, and tracing over
the reservoir states of the QPC, we obtain a set of Bloch-type

7
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rate equations for the reduced density matrix σ(t) of the DQD
system:

σ̇11(t) = iD−σ41 − iS−σ31 − iD+σ14 + iS+σ13,

σ̇22(t) = −iD+σ42 − iS+σ32 + iD−σ24 + iS−σ23,

σ̇33(t) = i�z
d(σ34 − σ43)+ iS+σ32 + iS−σ31

− iS−σ23 − iS+σ13,

σ̇44(t) = i�z
d(σ43 − σ34)+ iD+σ42 − iD−σ41

+ i�0(σ45 − σ54)− iD−σ24 + iD+σ14,

σ̇55(t) = i�0(σ54 − σ45),

(27)

and

σ̇12(t) = i(E2 − E1)σ12 + iD−σ14 + iS−σ13

+iD−σ42 − iS−σ32,

σ̇13(t) = i(E3 − E1)σ13 + iD−σ43 − iS−σ33 + iS+σ12

+ iS−σ11 + i�z
dσ14,

σ̇14(t) = i(E4 − E1)σ14 + iD−(σ44 − σ11)− iS−σ34

+ iD+σ12 + i�0σ15 + i�z
dσ13,

σ̇15(t) = i(E5 − E1)σ15 + i�0σ14 + iD−σ45 − iS−σ35

− 1
2�

′
dσ15 − 1

2χ
′σ14.

σ̇23(t) = i(E3 − E2)σ23 − iD+σ43 − iS+(σ33 − σ22)

+ iS−σ21 + i�z
dσ24,

σ̇24(t) = i(E4 − E2)σ24 − iD+(σ44 − σ22)− iS+σ34

−iD−σ21 + i�0σ25 + i�z
dσ23,

σ̇25(t) = i(E5 − E2)σ25 + i�0σ24 − iD+σ45 − iS+σ35

− 1
2�

′
dσ25 − 1

2χ
′σ24,

σ̇34(t) = −iS−σ24 − iS+σ14 − iD−σ31 + iD+σ32

− i�z
d(σ44 − σ33)+ i�0σ35,

σ̇35(t) = i(E5 − E3)σ35 + i�0σ34 − iS−σ25 − iS+σ15

− i�z
dσ45 − 1

2�
′
dσ35 − 1

2χ
′σ34,

σ̇45(t) = i(E5 − E4)σ45 + i�0(σ44 − σ55)− iD−σ25

+ iD+σ15 − i�z
dσ35 − 1

2�
′
dσ45 − 1

2χ
′(σ44 + σ55).

(28)

Here the detector-induced dephasing rate is �′
d = (

√
D′′ −√

D′)2, with

D′′ = 2πρLρR�
′′2Vd, D′ = 2πρLρR�

′2Vd. (29)

Also, we have defined

χ ′ = �′

Vd

(
�′

�′′ + �′′

�′ − 2

)
, �z

d = gμB Bz
d,

D±(t) = �±
d +�1(t), S±(t) = �±

s +�1(t), (30)

where
�′ = 2πρLρR�

′′�0�
′Vd,

�1(t) = �1 cos(ωct),

�±
d = gμB√

2
(Bx

d ± iB y
d ),

�±
s = gμB√

2
(Bx

s ± iB y
s ).

(31)

The QPC current is given by

I (t) = I1[σ11(t)+ σ22(t)+ σ33(t)+ σ44(t)] + I2σ55(t), (32)

where I1 (I2) is the stationary current through the QPC when
the right dot is occupied by one electron (two electrons).

3.3. Results and analysis

We have numerically integrated the rate equations and obtained
the time-dependent density matrix elements. As discussed in
section 3.1, since there is always a spin-up electron in the
reference dot, the injection of a spin-up electron into the qubit
dot forms a double-dot triplet state |1〉 = |↑L↑R〉 in the DQD
system. In contrast, if the injected electron is spin-down,
the DQD system initially takes the state |↓L↑R〉. Thus, after
injecting an electron into the left dot, the possible experimental
initial states of the DQD system are |1〉 and |↓L↑R〉. In order
to show how the current through the QPC changes for different
initial states of the DQD system, we assume that the DQD
system initially takes the state |1〉 or |↓L↑R〉.

The initial state |↓L↑R〉 is a superposition of the double-
dot triplet state |3〉 and the double-dot singlet state |4〉, i.e.,

|↓L↑R〉 = 1√
2
(|3〉 − |4〉). (33)

Here the state |4〉 is coupled to the single-dot singlet state |5〉
directly via hopping coupling, while the state |3〉 is coupled to
|5〉 via the intermediate state |4〉 (where the transition from |3〉
to |4〉 is induced by the Bz

d term). To reveal the contributions
from different components, we also take the state |3〉 or |4〉
as the initial state to study the time evolution of the current
through the QPC.

In our numerical calculations regarding the initial state
|↓L↑R〉, we rewrite the rate equations (27) and (28) in
the occupation representation defined by the basis states
|a〉, |b〉, |c〉, |d〉, and |e〉, where

|a〉 ≡ |↑L↑R〉 = |1〉,
|b〉 ≡ |↓L↓R〉 = |2〉,

|c〉 ≡ |↑L↓R〉 = 1√
2
(|3〉 + |4〉),

|d〉 ≡ |↓L↑R〉 = 1√
2
(|3〉 − |4〉),

|e〉 ≡ 1√
2
(|↑R↓R〉 − |↓R↑R〉) = |5〉.

(34)

With these new basis states, one can express σi j ≡ 〈i |σ | j〉
(i, j = 1 to 5) using σμν ≡ 〈μ|σ |ν〉 (μ, ν = a, b, c, d , and e),
e.g.,

σ13 = 1√
2
(σac + σad),

σ23 = 1√
2
(σbc + σbd),

σ33 = 1
2 (σcc + σcd + σdc + σdd),

σ43 = 1
2 (σcc + σcd − σdc − σdd).

(35)

8
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Figure 6. Time evolution of the occupation probability σ55(t) of the single-dot singlet state |SS〉 for four different initial conditions:
(a) σ11(0) = 1, (c) σ33(0) = 1, (e) σ44(0) = 1 and (g) σdd(0) = 1, where the hyperfine interaction is included. (b), (d), (f) and (h) The
corresponding QPC currents for these four different initial conditions. The nuclear magnetic fields are chosen to be Bx,y,z

NL = (−2, 1, 3) mT,
and Bx,y,z

NR = (−1, 2, 0) mT. The other parameters are the same as in figure 5.

In this way, we can transform equations (27) and (28) into the
rate equations in the occupation representation.

We first consider the case without hyperfine interactions,
i.e., BNL(R) = 0. In this limit, the coupling between the
states |3〉 and |4〉 vanishes. (i) If initially the DQD takes the
double-dot triplet state |1〉, the system will not evolve into
other states due to the large Zeeman splitting. In this case,
the electron in the left dot does not hop into the right one
and the current through the QPC does not change, as shown
in figures 5(a) and (b). (ii) Alternatively, for an initial state
|3〉, the DQD system will also remain at this state because |3〉
does not couple with any other states. Similar to the case of
the initial state |1〉, the occupation probability of the single-dot
singlet state |5〉 is zero and the current through the QPC also
remains unchanged (see figures 5(c) and (d)). (iii) In contrast,
as shown in figures 5(e) and (f), if the DQD system initially
stays at |4〉, it couples with the single-dot singlet state due to
the hopping coupling between the two dots. This gives rise to
nonzero occupation probability for the single-dot singlet state
and a variable current through the QPC. (iv) The results shown
in figures 5(g) and (h) look like a combination of the results in
both (ii) and (iii). This is because the initial state |d〉 = |↓L↑R〉

is a superposition of the states |3〉 and |4〉 (cf equation (33)).
Moreover, only the state |4〉 contributes to the variations of
both the probability of the state |5〉 and the current through
the QPC.

Moreover, it is shown in figures 5(b) and (d) that the two
cases with initial states |1〉 and |3〉 are indistinguishable in
measuring the electron spin. This is due to neglecting the
hyperfine interactions. When they are included, these two
cases become distinguishable (cf figure 6).

For an initial state |1〉 or |4〉, the results are similar to
those without the hyperfine interactions. This can be clearly
seen by comparing figures 6(a) and (b) with figures 5(a)
and (b) for initial state |1〉, and similarly comparing figures 6(e)
and (f) with figures 5(e) and (f) for initial state |4〉. In
contrast, for initial state |3〉, because |3〉 and |4〉 are degenerate,
hyperfine interactions are able to provide significant couplings.
Moreover, state |4〉 is also coupled to |5〉 via hopping. Thus,
from initial state |3〉, the system can finally evolve to |5〉.
Indeed, this is reflected in the variations of both the occupation
probability of state |5〉 and the QPC current (comparing
figures 6(c) and (d) with figures 5(c) and (d)). For the initial
state |d〉 = |↓L↑R〉, the probability of the state |5〉 and the

9
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Figure 7. (a) Time evolution of the occupation probability of the single-dot singlet state in the presence of an ESR magnetic field for the
initial state |1〉 (see the text). (b) The corresponding QPC current.

QPC current (shown in figures 6(g) and (h)) also look like
a combination of the results for both the initial states |3〉
and |4〉 (shown in figures 6(c)–(f)), similar to the case without
hyperfine interaction in the DQD.

The last issue to be addressed is to determine if the
electron is successfully injected into the left dot. If the injection
fails, the QPC current is always I1. The result is the same
as that with a spin-up electron injected into the qubit dot. To
distinguish between these two cases, we can apply a transverse
magnetic field to flip the electron spin in the qubit dot. For
a successful injection, the electron with spin-up will flip to
become spin-down and then hop into the right dot. The DQD
system then takes the state |↓L↑R〉. As discussed above, this
state, i.e., the superposition state of |3〉 and |4〉, is coupled
to the single-dot singlet state |5〉, giving rise to a variation of
the occupation probability σ55 (see figure 7(a)) as well as the
QPC current (see figure 7(b)). This is different from the case
of a constant current in the absence of any successful electron
injection into the left dot.

4. Conclusion

In summary, we have studied the readout of a single electron
spin in a DQD system. The electron spin is initially confined
in the QD serving as a qubit dot. A reference dot is coupled
to the qubit dot via a tunneling coupling. Also, a QPC acts
as a measurement device, placed near the reference dot for
detecting the variation of the electron number in the reference
dot. We have considered the two implementations in which
either one or two electrons occupy the DQD. In the one-
electron case, the only electron in the DQD is the qubit electron
to be measured. An external magnetic field is applied to both
dots so that the energy-level splittings ε↑ and ε↓ for spin-up
and spin-down electrons are different. Gate voltages of the two
dots are tuned so that ε↑ ∼ 0 and ε↓ � �0. These conditions
ensure that only a spin-up electron but not a spin-down electron
in the qubit dot can tunnel to the reference dot. This gives
rise to very different currents through the QPC and can be
used to readout the electron spin states of the qubit dot. In
the two-electron case, an additional spin-up electron is always
confined in the reference dot. This can be easily achieved by
properly tuning the gate voltages of the dots. We have shown
that the electron spin states of the qubit dot can also be read

out by applying an external magnetic field when considering
effects of hyperfine interactions between the electron spin and
the nuclear spins of the host materials. In the high Zeeman
splitting limit, the flipping of the electron spin induced by the
hyperfine interactions are greatly suppressed. In this case, only
a spin-down electron in the qubit dot can tunnel to the reference
dot. This again allows one to distinguish between the electron
spin states in the qubit dot by measuring the currents through
the QPC. Furthermore, we propose an approach involving an
ESR oscillating magnetic field which can confirm the success
of an electron injection event into the qubit dot.
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